
Nq-S CS-91-015 .,, --

NAVAL POSTGRADUATE SCHOOL
Monterey, California

8AD-A243 268

DTTI-'v
L.ECIi, g%

010!SDECiZ1 gg9

AN OBJECT-ORIENTED APPROACH

TO SECURITY POLICIES AND THEIR ACCESS CONTROLS

FOR DATABASE MANAGEMENT

David K. Hsiao

September 1991

Approved for public release; distribution is unlimited.

* Prepared for:

* Naval Postgraduate School
Monterey. California 93943 9-17544

NAVAL POSTGRADUATE SCHOOL

Monterey, California

Rear Admiral R. W. West, Jr. Harrison Shull
Superintcndent Provost

This report was prepared for and funded by the Naval Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared b):

DAVID K. HSIAO
Professor of Computer Science

Reviewed by: Released by:

.I I.' P .- I, (- or ,: / .

ROBERT B. MCGHE"o 0

Chairman
Department of Computer Science

UNCLASSIFIED
SLCUH11y LASSI1H(CAi-.ON 1- lr

REPORT DOCUMENTATION PAGE
I& FIEPORT SECURITY CLA55iHiCA IION1 I lb. RESTRIC~iVE MARI(INC&S

UNCLASSIFIED _________________

2a SECURITYV CLASSi-iCAI ON AUTIHORITY 3.05 UIST-RBUTIIONiAVAiLABiLITIY OF HREPOR I

2b. 0F-CLASSIFICA I (IUIDOVNGRAUING 9CHEOULF. Approved for public rrlease;
distribution is unlimted

4. PERFORMiNG ORGANiZATION REPORT NUMBER(S) .MOIRNGORGANIZATION REPORT NUMBER(S)

NPSCS-91-015

6a. NAME OF PERFORMING ORGANIZATION 16b OFF-ICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Computer Science Dept. (if applicable) Naval Research Laboratory
Naval Postgraduate School CS

6c. ADDRESS (City. State, and ZIP Code) 7b. ADDRESS (City, State. and ZIP Code)

Monterey, CA 93943 Code 5542, Naval Research Laboratory
Washington. D.C. 20375

8a. NAME OF FUNUING~tPON5ORiNG I o OFFICE SYME'AL 9. PROCUREMENT IN5TRUMENT IUEN~i-,.CAIiok NUMaER
ORGANIZATION ifaprbe
Naval Postgraduate School (tapibdjOM&N Direct Funding

8c. ADDRESS (City, State. and ZIP Code) 10 SOUCE OFFUNU1NG NUV9EwS
PROGRAM PROJECT I TAS(WOKU11

Monterey, CA 93943 ELEMENT NO. NO NO. ACCESSION NO.

11. TITLE (Incwde Secury Classification)

An Object-Oriented Approach to Security Policies and Access Controls for Database Management
12. PERSONAL AUTHORtS)

13a. TYPE OF REPORT I13b TIME COVEU 9191 1 14. DATE OF REPORT (Year. Monot Cay) I15. PAGE C .T

I FROM 7/91 TO I 1991 September
16..SUPPLEMENTARY NOIAIION

17 COSATI CODES 18 SUBJECT TERMS (Continue on revvirse of necessary and scintity by block number)

FIELD GROUP SUB-GROUP Object-Oriented Data Model, Inheritance, Covering, The Need-to-
_________________________ Know Policy, The Multilevel Security Policy.

19. ANSTRLACT (Con tinue on reverse it necssary and idenity by block number)

The constructs of the object-oriented data model seem to be good candidates for Lhe specification of the
need-to-know and multilevel security policies and their respective access control requirements. This
report demonstrates such specifications. The implication of this demonstration may be profound, since for
the first time multipF-! security policies and their respective access controls mray be realized and supported
in a single object-oriented database management system.

20 L)ISTRIB8UTION'AVA" AE'U V OF ABSI RACT III AB3STnAC Sz URi lTYCLASi~CA lION
3UNCLASSIFIED/UNLIMITED [: SAM6E AS RPT C]OTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE iNCIVIDUAL I22b T~ LEFOE(icueAe[Cd)22c QFCE SYMi'.CI
David K. Hsiao (40X) 646-2253 A S14

DO FORM 1473, 64 MAR 83 APR ed6jon may be used until exhausted SECURITY CL.ASS171CATION OF THiS PAGE
All oth'er editions are obsolete UNCLASSIFIED

Preface

There are two articles in this report: Part One and Part Two. Although these two parts are related,
each is on a different security policy and a different object-oriented construct. By treating them
separately, it is hoped that there is an in-depth discussion of the subject matiers involved. However,
the introduction of Part One may be served as the introduction of the report. The concluding
remarks of Part Two may be corsidered as the conclusion of the report. Thus, the report should be
read in sequel, i.e., Part One first and Part Two next.

In 1990 while preparing a tutorial on object-oriented approach to database management, the author
was impressed by the rich and poweiful constructs provided in the object-oriented data model
(oodm). These constructs were intended for specifying database organizations, processing require-
ments, and integrity constraints. However, they soon dawned on the aud.or that they may be also
good for specifying security policies and access control requirements. The present report is an
exercise of such specifications. The argument for specifying the security policies and access con-
trol requirements are many. They are articulated in the report. The argument against specifying
security policies an1i access control requirements are few. There are nevertheless indicated in the
report.

The Information Technology Division (ITD) of the Naval Research Laboratory (NRL) is exainin-
ing the oodzn and its role in integrity constraints. Our examination of the oodm and its role in secu-
rity issues complements their examination nicely. The work reported herein is supported by funds
provided by ITD of NRL. The author would like to thank Dr. Carl Landwehr of NRL for the sup-
port Thanks also due to Dr. Landwehr's colleagues at ITI) for some stimulating discussions and
technical exchanges on the topical matters. Last but not the least, I would like to thank ou, German
Visiting Scholar, Daniel A. Keim, for proof- reading the report and for commenting on the material.

A".. ,, For

- .Ti C...

By N T, .. . LI I
A-

A-1 h.I

..

The Relationship of Data Models and Security Requirements:
Part One -

The Object-Oriented Data Model and the Need-to-Know Policy*

David K. Hsiao

Computer Science Department

Naval Postgraduate School
Monterey, CA 93943

U.S.A.

Abstract

This is the first of two papers on the issues of data models and their capabilities or incapabilities to
support various security policies and their access control requirements. It is important to design a
data model which accommodates a security policy and its access control requirements. Otherwise.
we must extend the data model and modify its database system. If a data model supports a specific
security pelicy and its access control requirements, then we must make certain that there is also a
database system which supports the database characterized by the data model. It is always easier
to come up a new data model; it is much harder to build a database system for the data model.

As monopolicy data models and their database systems proliferate, issues of resource consolidaton
and data sharing appear. In a large organization which requires many dfferent security policies and
their access control requirements, there will be a large number of heterogeneous database systems
each of which supports a different security policy and its unique access control requirements for
one of the heterogeneous databases. Such proliferations raise the questions: How can we consoli-
date various databases, systera software and hardware, and support personnel so that we may con-
serve the support and mainenance cost? How can we interface various database systems so tlat
data sharing among heterogeneous databases may be facilitated without compromising the auton-
omy of individual security policies and their access control requirements in the organization?

An apparent solution to aforementioned issues is to have (1) a data model which allows different
security policies and access control requirements to be specified for their corresponding databases
and to have (2) a database system which supports databases characterized by the data model. In this
paper, we show that the object-oriented data model (oodm) allows the need-to-know policy and its
access control requirements to be specified for an object-oriented database. In the second paper, we
will show that the oodm allows the multilevel security policy and its access control requirements
to be specified for another object-oriented database. The interesting consequence of these specifi-
cations is that both policies over their respective databases may be supported by an object-oriented
database system (OODBMS) which meets our goal for resource consolidation and data sharing.
Thus, an OODBMS is also a multipolicy DBMS which requires no extension of the oodm and no
modification of the OODBMS for supporting different policies.

*The work reported here is supported in part by funds provided from NRL.

2

1. INTRODUCTION

Conventional data models are not intended for supporting security policies and their access control
requirements over their respective databases so modeled. They ere designed for querying and
manipulation of modeled databases. Here, we provide some backgroads on the past effort to mod-
ify or adopt certain data models for the support of specific security policies and their access control
requirements. We also point out the limitations and pitfalls of these modifications and adoptions.

1.1. The Restriction to a Specific Security Policy and an Ad Hoc Access Control Mechanism

A case in point can be found in the use of the relational data model to support the need-to-know
policy and the use of the view mechanism in specifying the access control requirements for the pol-
icy. The need-to-know policy has never been clearly stated in the relational model. Evea the view,
a construct necessary for any access control to relations, is not found among the constructs of the
relational dau model. Some refer to it as a derived relation [11. However, the notion of derived rela-
tions has not been incorporated into the relational data model either. Instead, it is relegated to the
data language of h particular database :ystcni which supports relational databases. For instance,
IBM SQL/DS allows the view to be a language construct of SQL.

On the other hand, INGRES, a relational database system, also supports the need-to-know policy.
However, its data language, QUEL, does not use the view mechanism for access control. Instead,
it uses the query-modification mechanism [2]. Thus, the notion of a view does not exist in QUEL.
By default, all conventional database systems support the need-to-know security policy and vari-
ous ad hoc means to facilitate its access control requirements. The conventional database user is
therefore restricted to the same security policy and an ad hoc access control mechanism of the daLa-
base system employed.

1.2. The Need of Other Security Policies and Access Control Requirements

A large organization may have different security policies for different databases. For example, as
a large organization, the U.S. DoD requires the use of the multilevel security policy for accessing
classified information and the need-to-know policy for accessing unclassified information. It is not
surprising that in DoD data management a large number of IBM SQL/DS Lnd INGRES are being
employed for the pupose of supporting unclassified databases of payrolls and inventories, for
example. On the other hand, if we place classified information as databases in a database system
then the database system must support the multilevel security policy and its access control require-
ments. There are two approaches to meet this need. They are expounded in the fol!owing sections.

* A. To Extend a Conventional Data Model for the Purpose of Accepting a New Security Policy

A The notion of polyinstantiatons of the relational tuple 131 is an effort to extend the relational data

model for supporting the multilevel security policy and its read-down and write-up requirements.
Although the introduction of polyinstantiations to the relational model is a rigorous mathematical

3

exercise and the extension, i.e., the extended data model, is not a relational model in that a polyin-
stantiated relational database can not be placed in a conventional relational database system such
as IBM SQL/DS or INGRES for access and manipulation operations. In fact, to display its capa-
bility for polyinstantiations of tuples, tle extended data model uses an Entity-Relationship data-
base system for such displays. We all know that the E-R data model (4] is not the relational data
model.

Consequently, a conventional relational database system must also be modified and extended for
the polyinstantiation, i.e., for polyinstantiated relational databases. The modification and extension
are applied not just to the database system itself, but also to the data language whether the language
is SQL or QUEL. Retofitting an existing system and its ad hoc access control mechanism to accom-
modate a new security policy and its access control requiremnts is a messy task. It may result in a
system less reliable and secure than building a new system from scratch. Further, we have design
and implementation methodologies for building new systems, but we do not have methodologie-
for retrofitting old systems.

B. To Find a New Data Model for the Support of the New Security Policy

Ideally, the intrinsic property of a data model supports a given security policy. The database
designer merely has to recognize that the data model can characterize the database which meets the
access control requirements of the security policy. There is no need for the database designer to
modify the data model. Nor is there a need for the database designer to retofit the database system
for the new database.

Such an attempt has taken place in the attribute-based data model. It has been found that the equiv-
alence relation of the attribute-based data model can be used to characterize the compartmentaliza-
tion of classified data under the multilevei security policy [5]. Further, the access control
mechanism of the attribute-based database system [61 supports the access control requirements of
the multilevel security policy such as the read-down operation [7].

However, the attribute-based database system is experimental. There is no commercial attribute-
based database system. To have an attribute-based database system with production quality, we
may have to retofit the experimental attribute-based database system or build a new attribute-
based database system from scratch. Again, we fall into the same dilemma as we have encountered
in Section A.

1.3. The Limitation of Monomodel and Monopolicy Database Systems

From above discussions, we learn that it is possible to build different database systems for different
data models, each of which supports a distinct security policy and its access control requirements.
Since each of these database systems has its own data model and supports its unique security pol-
icy, we term them monomodel and monopolicy database systems. In a large organization where a
number of security policies and access control requirements over differen; databases is required,
there will be a number of monomodel and monopolicy database systems. The proliferation of wsrge

4

number, of monomodel and monopolicy database systems and their databases in an organization
creates the following issues: resource consolidatinl and data sharing. We address these two issues
in the following sections separately.

A. The Issue of Resouse Consolidation

Monomodel and monopolicy database systems and their databases proliferate in an organization in
order to support multiple security policies and their different access control requirements, corre-
spondingly. There is an ever-increasing addition of new database software, hardware and personnel
to accommodate and maintain the new policies, databases and systems. Consequently, there is the
need of resource consolidation, i.e., to consolidate all the database software into one database sys-
tern, all the database hardware into one computer system, and all the support personnel into one
team. Resource consolidation enables the organization to exercise centralized controls and to min-
imize redundant resources which are ideal for -. security-conscious and cost-conscious organiza-
tion.

However, conventional monomodel and monopolicy database systems are immuned from resource
consolidation. The mulumodel and multilingual database system [8, 9], on the other hand, may
lend itself for the support of multiple policies and their access control requirements in the same sys-
tem which is therefore an ideal candidate for resourse consolidation. The arrival of a multimodel
and multilingual database system will be at least a decade away [10, 11]; meanwhile, we need a
ready solution to the issue of resource consolidation.

B. The Issue of Data Sharing

Ideally, monomodel and mon-'olicy database systems scattered at different localities in an orga-
nization cn be interconnected via a net so that a database of a local database system may be
accessed by a remote user and controlled by the local security policy and its access control mech-
anism of the database system. Such is really the issue of data sharing among distributed heteroge-
neous databases and systems. Presently, we have no solution towards data sharing among
distributed hctcrogeneous databases and systems. Thus, present-day heterogeneous database sys-
tems and their databases are run in isolation with no data sharing among themselves. We need a
ready solution to the issue of data sharing among monomodel and monopolicy database systems
now.

2. AN EXPERIMENTATION WITH THE OBJECT-ORIENTED DATA MODEL (OODM)

The object-oriented apT. ach to programming has long preceded the object-oriented approach to
database management. Wnereas an object-oriented programming language may be viewed by a

* programmer as just another programming language, the oodm to a database practitioner is not like
any of the conventional data models. A conventional data model tends to provide a few simple and
limited structures for the dat''-se designer to organize data for the database. For example, there
are the table of the relational data model, the hierarchy of the hierarchical data model, and the net-

5

work of the Codasyl data model. The oodm, instead of providing certain data structures (e.g.,
tables, hierarchy, and network) for the organization of data into structured entities of a database,
provides properties to be defined and maintained for data. In fact, the lack of static data structures
in the oodm enaLles many detractors of the oodm to object the notion of an object as being too
structureless and vague.

However, as far as our concern for supporting different security policies and their access control
requirements, the oodm is superb. Further, we ,cgin to have object-oriented database systems of
production quality. If we can capture all the security policies and their access control requirements
into object-oriented databases, then we can support these object-oriented databases in an object-
oriented database system (OODBMS). The issues of resourse consolidation and data sharing will
disappear, since we will be operating in a homogeneous database environment (i.e., all databases
are object-orientLl), instead of a heterogeneous database environment based on many different
data models. In the following sections we elaborate on our observation.

2.1. Two Properties of the OODM and their Relationship to Different Security Policies

Th' concept of inheritance is intrinsic to the relationship of one object class with another. Let B be
an object class. B is said to be an object subclass of an object class A. if B inherits all the property
from A. The inheritance is meant for B to have all the atributes and actions of A. We are going to
illustrate in this paper that the inheritance property of the oodm supports the need-to-know policy
and its access control requirements. I, our illustration, we then introduce the terminology and def-
inition of the inh-rtance pronerty of the oodm.

On the other hand, the concept of covering is intrinsic to the relationship of one object class with
subsets of another object class. Let A and B be two object classes. We say that A and B have a cov-
er.ng relationship; more specifically, we say that A is a cover of B if every object of A corresponds
to a subset of objects of B. The correspondence is a mapping f which determines for an object, a,
of A all the objects, b's, of the subset f(a) of B such that f(a) = b for every one of those b's. We will
illustrate in our second paper that the covering property of the oodm supports the multilevel secu-
rity policy and its access control requirements. In the second paper, we will also introduce the ter-
minology and definition of the covering property of the oodm.

2.2. The Use of an Object-Oriented Database System to Support Databases under Different Secu-
rity Policies.

From the previous section, we learn that the oodm has properties which support at least two differ-
ent, well-known security policies and their access control requirements. In other words, object-cri-
ented databases may be specified, generated and protected under different security policies and
their access control requirements. All these databases can be managed by an OODBMS which of
course upholds the policies and requirements for their respective databases.

This OODBMS is of course a monomodel and multipolic-. database system. As a homogeneous
database system, the issues of resource consolidation and data sharing disappear.

6

3. THE OODM'S INHERITANCE IN SUPPORT OF THE NEED-TO-KNOW POLICY

We first introduce the notion of inheritance as it is defined over the objects of an object-oriented
database. We then show how the inheritance can be used to define the need-to-know policy and its
access control requiremcnts for a given database.

3.1. Objects, Object Classes and Object Hierarchies

The most fundamental notion and construct in an object-oriented approach to database manage-
ment are the notion and construct of an object. An object is a data aggregate of a class; i.e., it has
some value of the class. To coincide the class of values of a database object with the type of values
of a programming object, some database practitioners also use the term, type, in lieu of the term,
class, and the term, instance, instead of the term, aggregate. In this paper, we use one set of termi-
nology only.

Objects may be simple or complex. Examples of simple objects can be found in the primitive
objects where each class of primitive objects has an unique and basic data class such as integers,
floating-point numbers, or character strings. More specifically, in the object class, INTEGERS,
every primitive object, i.e., an integer, has a primitive value, i.e., the integer proper. Formally, we
write down the object class as follows:

Objecz class: INTEGERS
Attribute: Integer

The new term, attribute, denotes the property, i.e., the value class, of the object. In this example,
the literal, INTEGERS, is the name of he object class and the literal, Integer, names the place-
holder for all its attribute values. We may have the following primitive object class:

Object class: FLOATING-POINTS
Attribute: Flcating-point number

An object is complex if it is formed with other primitive and/or existing objects as its attributes.
Therefore, a complex object class consists of complex objects of the same attributes. The following
is a specification of a complex object class made of two primitive object classes:

Object class: NUMBERS

Attribute 1: INTEGERS
Attribute 2: FLOATING-POINTS

The use of capital letters in naming the attributes indicating that these are names of object classes,
since we have consistently used the capitals for such purposes in earlier specifications. We also pro-
vide some spaces to separate the specification of an object class from the specification of its
attributes. In general, a complex object class, OBJECT-CLASS, has the following specification:

7

Object class: OBJECT-CLASS

Attribute I: OBJECT-CLASS- I
Attribute 2: OBJECT-CL-ASS-2

Attribute n: OBJECT-CLASS-n

Graphically, they are depicted as follows:

OBJECT-CLASS- I
OBJECT-CLASS-2

OBJECT-CLASS

OBJECT-CLASS-n

The above structure of a complex object class depicts a two-level hierarchy of object classes. In
general, multiple levels are possible in a class hierarchy.

3.2. Actions

An action is an operation or a function that is defintd for an object class and can be performed on
objects of the object class. In fact, the only way to operate on an object of an object clzss is by
means of the operation or function defined for the object class. Here, we have the major departure
from the traditional database management and conventional programming. In traditional database
management, transactions operate on data aggregates of a database. Thcse transactions are written
by the application programmer and introduced at different times and for different applications.
They are managed separately from the database by the DBMS. Further, they are not transactions
written in terms of specific operations or functions pre-defined for individual data aggregates.

In conventional programming, operations or functions in a program are defined solely for a set of
built-in data structures. They are not meant for data structures in other programs. It, programming,
we bring data structures into individual programs. Oa the other hand, in the OODBMS, we bring
operations or functions into a database a;,d associate them with individual object classes of the da-
tabase. This is in the opposite way of programming. It is also different from traditional database
management where few operations or functions are pre-defined for, restricted to, and incorporated
into specific data aggregates of a database.

What are the benefits of inzorporating an operation or a function. i.e., an action, into objects of an
object class? It defines a legitimate operation or function to be performed on objects of a given ob-

8

ject class. It also provides a standard interface for the application prograrmne to form a complex
object of interfaced objects, arid write a transaction with standard operations or functions of the in-
terface on interfaced objects. By restricting accesses to and manipulations of objects to the Icgiti-
mate operation (or function) and standard interface, the operational and data integrity and opera-
tional and data security of objects can be assured. We will illustrate these notions and constructs
with examples in later sections.

Here, we introduce the notion and construct of simple and complex actions. Primitive actions are
simple, built-in actions. They are provided by the OODBMS. Examples of the primitive actions are
as follows:

Read - the input-data-for-an-object function.

Get - the get-the-objec:-identifier-of-an-object function,

Find - the get-the-object-by-its-identifier function,

Include - the include-the-object-of-an-object-class-
into-a-set-of-objects-of-the-object-class function,

Exclude - the exclude-the-object-of-dn-object-class-
from-a-set-of-objects-of-the-object-clas: function,

Check - the check-the-membership-of-the-object-of-an-
object-class-in-a-set-of-objects-of-the-object-class function,

Update - the modify-the-object-of-an-object-class function,

Post - the post-error function;

End - the end-of-an-action function.

Complex actions are made of primitive and/or exisiting actions on the basis of some action com-
position rules. These rules are supported by the OODBMS. Examples of action composition rules
are as follows:

The sequencing rule - sequencing a number of functions or OPliuvis by placing semicolons (;)
between two adjacent functions or operations.

The conditional rule - the IF-THEN-ELSE construct with functions or operations as conditions of
the construct.

Let us form, for example, several complex actions by using the primitive actions given previousl'
and the action composition rules proposed above.

II

Add-user: Read user data; Get user identifier;
Check validity;
IF data ok THEN Include user

ELSE Post error,
End

Drop-user. Get user identifier,
Find user
IF user exists THEN Exciude user

ELSE Post error;
End

Change-password: Get user identifier;
Read new password;
Find user,
IF user exists THEN Update password

ELSE Post error,
End

In summary. we have specified three complex actions in terms of nine simpie actions and two ac-

tion composition 1ules. Actions are also referred to as methods. In this paper we use the term, ac-

tion. over the other.

3.3. Another Look at Objects and Object Classes

Actions are always specified for an object class, whether they are simple or complex. Therefore,

they may also be considered as a part of the property of the object class. In specifying an object

class, we may now name actions of the object class as its additional property. Considering user

records as objects of an object class and complex functions defined for the change of user pass-

words as actions of the object class, we may have the following specification:

Object class: USERS

Attributes: USER IDENTIFIER
USER NAME
USER PASSWORD

Actions: Add-user
Drop-user
Change-password

Attributes of the example are complex, since they are capitalized and defined in terms of primitive

10

or existing object classes which are defined elsewhere. The three complex actions have been de-
fined in terms of the nine primitive ones and two rules given earlier.

In general, we have the following specification of an (-bject class:

Object class: (the name of an object class)

(Property list list attibutes first,
then actions next.)

Attributes: OBJECT-CLASS- I
OBJECT-CLASS-2

OBJECT-CLASS-n

Actions: Action- I
Action-2

Action-m

It is important to note that the real definition of an object class includes not only its attributes, but
also its actions. This is the definition we will be using in the subsequent discussion of and reference
to the notion and construct of object classes in object-oriented database management.

3.4. The Object-Class Hierarchy and its Inheritance

So far we have focused on the intrinsic property of the object class individually, i.e., the common
attributes and actions of all the objects of a given class. However, we have not considered the re-
lationship of one object class with another object class. The concept of inheritance is intn.sic to
the relationship of one object class with another. Let B be an object class. B is said to be an object
subclass of an object class A, if B inherits all the property from A. The inheritance is meant for B
to have all the attributes and actions cf A. The converse is not true, if B may have additional at-
tributes and/or actions which are not in the property of A.

If all the attributes and all the actions of the object class A are common to all its object subclasses.
B1, B2,. . , Bh and there may be some property of Bi (for i = 1 h) which is not common to
A, then, in this case, we have a two-level object-class hierachy of A and Bi.

The definition of inheritance also suggests two kinds of inheritance: the data inheritance where B
inherits all the attributes of A, and the operational inheritance where B inherits all the actions of

II

A. Tht, data inheritance allows the application of strong classification over objects in the hierarchy.
The operational inheritance enables a common set of legitimate operations or functions to be ap-
plied to objects in the hierarchy. Largely due to these two inheritances data and operational integ-
rities and data and operational securities of an object class A and its subclasses B 1 through Bh are
upheld in the OODBMS. In other words, object-class hierarchies facilitate data and operational in-
tegrities as well as data and operational securities among its object classes in their respective hier-
archies.

Let Cij be object subclasses of Bi where j ranges from I through ki (i.e., kI for Clj, k2 for C2j,..
., kh for Chj). Since Bi are subclasses of the object class A, we have a three-level object-class hi-
erarchy as follows:

C1.1
C 1,2

B I

Cl,kl
C2, 1
C2,2

B2

A C2.k2

Ch, I

-~h. 2

Bh

hkh

In general, an object-class hierarchy may have multiple levels. Consider the two object classes be-
low. We note that some attributes and actions are new here whose primitives are assumed to be de-
fined elsewhere. We observe that both object classes. REGULAR-USERS and SUPERUSERS.
have three common attributes and three actions of the object class, USERS, depicted earlier. Thus,
both REGULAR-USERS and SUPERUSERS inherit from USERS.

Conversely, the object class, USERS, does not inherit from either REGULAR-USERS or SUPER-
USERS, since (1) neither REGULAR-USER LIST nor SUPERUSER LIST is in the attribute list
of USERS and (2) neither the verify-regular-user's-password action nor the monitor-superuser's-
access action is in the action list of USERS. Actually, either condition (1) or condition (2) will be
sufficient to invalidate the converse; there is no need to have both conditions.

12

Object class: REGULAR-USERS

Attributes: USER IDENTIFIER
USER NAME
USER PASSWORD
REGULAR-USER LIST

Actions: Add-user
Drop-user
Change-password
Verify-regular user's-password

Object class: SUPERUSERS

Attributes: USER IDENTIFIER
USER NAME
USER PASSWORD
SUPERUSER LIST

Actions: Add-user
Drop-user
Change-password
Monitor-superuser's-access

Graphically, they are depicted in a two-level object-class hierarchy below:

REGULAR-USERSS

USERS

SUPERUSERS

Due to space limitation, we have not listed "or each object class its property in terms of attributes
and actions.

Either the arrow notation (i.e., the is-pointed-by relation) or the subset notation (i.e., the is-a-
subeset-of mlation) has been used in the graphical representation of an object-class hierarchy, since
either notation is an is relation. Thus, the above graph can also be found as follows:

13

USERS
_REGULAR-USERS

QR SUPERUSERS

3.5. Generalization and Specialization vs. Common-Subset and Unique-Superset

The use of the subsut notation in the hierarchy is most revealing. It indicates that every property of
USERS is a property of REGULAR-USERS and SUPERUSERS. Thus. USERS' property become
the common property, i.e., common subset, of REGULAR-USERS and SUPERUSERS. If all the
property of an object class becomes the conmon subset of properties of many object classes, then
we say that the object class is a generalization of these many object classes. Conversely, each of
these many object classes is a specialization of the generalization, since it has some property un-
common to some others and unique to itself Inheritances in an object-class hierarchy always in-
duce generalizations and specializations. In the sample hierarchy, we say that USERS are a gener-
alization of REGULAR-USERS and SUPERUSERS. Conversely, either REGULAR-USERS or
SUPERUSERS are a specialization of USERS.

In the set-theoretic terminology, the generalization is the commnon-subset property. The specializa-
tior is the unique-superset property. Thus, in referring to the same example, we say that the prop-
erty of USERS is a subset of the property of either REGULAR-USERS or SUPERUSERS. Con-
versely, either the property of REGULAR-USERS or the property of SUPERUSERS is a superset
of the property of USERS. In practice, professionals in programming languages tend to use terms,
generalization and specialization, whereas professionals in database management tend to use their
equivalent terms, common-subset property and unique-superset property, since database opera-
tions are mostly set-oriented operations.

3.5. The Need-to-Know Policy and its Access Control Requirements

We now apply the object-oriented notions and constructs introduced in the last five sections to the
secure database application in which the need-to-know policy is upheld and its access control
requirements are facilitated. Every database has an owner. The owner of a database is asked (1) to
specify the database as an object class, called the owner object clss.and (2) to specify for each user
of the database an user object class as a subsct of the owner object class. In other wods, the owner
object class is the common superset of all the subset3 as characterized by their corresponding user
object classes. Thus, the owner object class is c specialization of each user object class which is in
turn a generalization of the owner object class.

In general, we may have the following specification where the owner object class has m atmit'utes
and n actions as its property. Database attributes are usual value-types such as NAME,
EMPLOYEE#, AGE, POSITION, SALARY, and DEPARTMENT. We denote them with attibute-
1, attribute-2,. . . ,attribute-m. Database actions afe pritrary database operations such as retrieve,
insert, update, delete, and merge/join. We deno:e them with action- 1, action-2 acnon-n. Thus,

14

the owner object class can be depicted as following:

Object class: OWNER
Attribute- I: NAME
Attribute-2: EMPLOYEE#

Attribute-m: AGE
Action- 1: Retrieve
Action-2: Insert

Action-n: Merge/Join

On the other hand, for each user object class the i attributes and j actions specified for the user are
respective subsets of the m attributes and n actions specified for the owner. More specifically, for
the user k we have the following specification:

Object class: USER-K
Attribite-kl: (one of the m attributes)
Attribnte-k2: (other one of the m attributes)

Attribute-ki: (another one of the m attributes)
Action-k I: (one of the n actions)
Action-k2: (other one of the n actions)

Action-kj: (another one of the n actions)

The important observation in the above specification is that (1) there are as many as k users who
have accesses to the same database owned by the owner; (2) each user's access to the database is
controlled individually by an owner's specification for the user, (3) in each specification the ki
attributes accessable to user k form a subset of the owner's m attributes; (4) in the same specifica-
tion the kj actions exercisable by user k forms a subset of the owner's n actions; (5) since ki's and
kj's may be different among themselves, all k user- may be subject to different access controls for
different needs to lnow. Graphically, we have the following:

15

Object-class: USER. I
Attibute- 1, 1: (one of the in attributes?
Attrbute- 1,2: (other one of the mn attributes)

Attribute-l1,i 1: (another one of the mn attributes)
Action- 1.1: (one of the n actions)
Action- 1,2: (other one of the n actions)

Action- 1 j 1: (another one of the n actions)

Object-class: USER-2
Attrbute-2, 1: (one of the mn attributes)

Atribute-2.2: (other onc of the m attributes)

'Object-class: OWNER
Attrbute-2,i2: (another one of the mn attributes) Attribute-I: NAME
Action-2,1: (one of the n actions) Attribute-2: EMPLOYEE#
Action-2,2: (other one of the n actions)

I Attribute-rn: AGE
Action-2.j2: (another one of the n actions) JAction-I: Retrieve

Action-2: Insert

Action-n: Merge/Join

Object-class: USER-K
Attribute-k, 1: (one of the mn attributes)
Attribute-k,2: (other one of the m attributes)

Atrribute-k,ik: (ancther one of the m attributes)
Action-k,1: (one of the n actions'.
Action-k,2: (other one of the n actions)

Action-k jk: (another one of the n actions)

16

3.7. The Use of the Object-Class Hierarchy for Access Controls

Let us first discuss the use of attibutes of an object -class hierarchy for access controls. We then
elaborate on the use of the actions in access controls.

A. Attributes of an Object-Class Hierarchy

The attributes specified for a user in the user's object class is equivalent to the attributes specified
for the user in the user's view of a relational database. However, unlike the oodm where a user
object class is specified as a subset, i.e., a generalization, of the owner's object class in an object-
class hierarchy, a user vie,., is specified in an ad hoc manner by way of a relational data language,
say, SQL Further. the hierachical relationship of a relation and its views between th: owner and
all the users of the owner's database is not spelled out. On the other hand, in the oodm the object-
class hierarchy is clearly spelled out as we have depicted one in the previous section. Thus, the
object-class hierarchy is a natural and effective means to specify access control requirments for
the need-to-know policy.

B. Actions as Access Priviledges and Queries in an Object-Class Hierarchy

The actions specified for a user in the user's object class subsumes the access priviliges and queries
specified in the user's view of a relational database. Access priviledges include read. update.
append, delete. etc. An access query is a logical expression of predicates defining the parn of a data-
base of which the user is granted some access priviledges. These specifications are again done in
an ad hoc manner in a relational data language. Further, it is never clear to the owner or the user
how the controlled accesses are carried out by the relational database system (RDBMS). Consider
the following two examples:

With a given access query wil! the RDBMS accepts the uger's online query, modify the user's
online query with the access query, retrieve from the database all the data satisfying the modified
query, and route all the retrieved data to the user? Here, the RDBMS performs a query modijfcation
which enables those and only those authorized data to be retrieved and brougt to the redl memory.

Or, with a given access query will the RDBMS accept the user's online query. retrieve from the
database all the data satisfying the online query, sort out from the real memory all the retrieved data
satisfying also the access query, anti route the sorted-out data to the user? In this case, the RDBMS
performs afiltering process which filters out all the unauthorized data for the user.

Obviously, the user and owner prefer the query modification over the filtering process in access
controls, since the former is more efficient than the latter. Nevertheless. few users or owners can
discover the access control mechanism of a given RDBMS. On the other hand, into the OODBMS
the owner can introduce the exact access control mechanism for the support of the need-to-know
policy. Since a user can only write a database transaction against a database in terms of the actions
specified in the user object class for the database, one of the pre-specified actions can be the only
access mechanism. This action is obviously introduced by the owner of the database, since the

17

owner is the one who has provided the specification of the objct--lass hierarchy in the first place.
In this way, the owner can determine for the user the exact access control mechanism. The subset
property, i.e., the generalization property, requires that all the users (whose object classes are in the
hicrarchy) to use the same and common access control mechanism, i.e.. the common action d.fined
for them. It also precludes a user from introduing a different access control mechanism, i.e., a new
action, since the new one would not form a subset of the set of owner's actions.

C. Actions as Integrity Constraints and Security Requirements in an Object-Class Hierarchy

Minimally, actions in a user object class are authorized access privileges. access queries, and pri-
mary database operations for the user. However, the role of actions in an object-class hicrarchy is
much larger and more embracing. Two extended controls - one for data integrity and the other for
data security - can also be facilitated with the use of actions.

Operational and data integrity is our concerns over the correctness and validity of attribute values.
To this end, for vital values we specify integrity constraints. In a conventional DBMS an integrity
constraint is usually a transaction defined over a data aggregate. The transaction will be triggered,
i.e., executed, by the DBMS whenever the data aggregate ;s accessed. The transaction obviously
checks the access operation and makes certain that the correctness and validity of data being
accessed are upheld. However, the use of triggers and intcgrity constraints requires the user to
learn, in addition to the data model of the database, the data language and the system functions of
the DBMS. Further, it is difficult to write an integrity constraint in a data language, since data lan-
guages, unlike programming languages, have limited capabilities in checking values.

Actions, on the other hand, may be included in the user object class in a hierarchy by the owner as
integrity constraints. Since these are the oily legitimate actions that the user can exercise, there is
no need of some trifgering mechanism to activate them. The user is compelled to use these actions
for the user's transaction. Further, an action is a program in the true sense of piograms of a pro-
gramrr.ing language. The only requirement is that there are some couplings between tle constructs
of a programming language and the constructs of the oodm vie the compiler of the programming
language.

Operational and data security is our concerns over the granualiy and access of attribute values.
Obviously, the owner would like to have controls over the amount of data a user may access and
the kind of operations a user may perform on the amount. Grar.uals, i.e., amount of data in a data
aggregate, may be as large as the entire database or as small as an attribute value. Actions as aggre-
gatefunctions can be used to delineate the granuais. The conventional DBMS provides aggregate
functions. However, the owner of a conventional DBMS has no way to compel a user of the own-
er's database to access data via certain aggregate functions. In owner object-class hierarchy, the
user has no other way, but the way specified for the user object class in the user's actions. These
actions may be aggregate functions dictated by the owner.

Actions can also be used to provide 'high-level' access operations. Whereas read, write, append
and others are considered primitive access operations, retrieve, delete, update, insert and others are
considered as primary databasc. operations. Although all these operations must be secured, they are
nevctheless considered low-level. Low-level access and database operations are typically pro-

18

vided and secured in a conventional DBMS. What we would like to secure are high-level access
and database operations which are introduced and dictated by the owner of a database. For exam-
ple, an action may be introduced by the owner to further authenticate the user of the owner's data-
base. Whenever the user accesses the database, the action demands additional passwords or
identifications for the entry to the database. Thus, this action serves as a security 'gate-keeper' of
the owner's database. For another example, an action may be introduced by the owner to audit cer-
tain pending sets of output of a user of the owner's database. If these sets of output may compro-
mise the security of the database due to certain accesses, the audit trails may be used for
postmortem analyses. Here, the action serves as a security 'trail-foilower' of user's accesses.

Whether fcr exotic integrity constraints or for high-level security requirements, actions are the
ideal means for the owner to introduce them into user object classes in the owner object-class hier-
archy.

4. CONCLUDING REMARKS

In this part one, we have argued that the conventional data models and their database systems are
not adequate for operational and data securities of the database. We have also argued that the exten-
sion of an existing data model, no matter how popular the model is, for upholding a specific secu-
rity policy and its access control requirements requires the modification or retrofitting of an
existing database system - which is also an undesirable and insecure effort. Lastly, we have argued
in the introduction that the support of separate policies and their different access control require-
ments on various database systems creates an environment of heterogeneous database systems and
databases. This environment prevents controlled sharing of heterogeneous databases and effective
consolidation of all the heterogeneous system software, hardware, and personnel.

We have argued for the experimentation with the oodm. The owner object-class hierarchy and the
inheritance property of the oodm support the need-to-know policy and its access control require-
ments naturally and effectively. To this end, we have introduced the necessary definitions and
enough examples :o illustrate the use of the object-class hierarchy and the inheritance for such
access controls. In the next experimentation, i.e., in the part two of this paper, we will introduce
the covering properry of the oodm. The covering property supports the multilevel security policy
and its access control requirements. It is hoped that these experimentations may show that the
oodm is a multipolicy data model. Since an object-oriented database system can support the oodm,
the same database system can uphold multiple security policies and their corresponding ,ccess
control requirements. Thus, this is a homogeneous database system with homogeneous databases.
despite their different policies and requirements. By nature, homogeneous databases and their data-
base system provide data sharing and resource consolidation. The issues with heterogeneous data-
bases and systems disappear in the OODBMS.

5. REFERENCES

(11 Codd, E. F., The Relational Model for Database Management: Version 2. Addison-Wesley,
1990.

19

[2] Stonebraker M. R., and Wong, E., "Access Control in Realtional Database Management Sys-
tems by Query Modification," Proceedings of ACM National Conference, 1974.

13] Denning. D. E., Lunt. T. F., Schell, R. R., Heckman, M., and Shockley, W. R., "A Multilevel
Relational Data Model," Proceedings of IEEE Symposium on Security and Privacy 1987.

[4] Chen, P. P.-S., "The Entity-Relationship Model - Toward a Unified View of Data," ACM Trans-
action on Database Systens, 1,1, 1976.

[5] Hoppenstand, G. S., and Hsiao, D. K., "Secure Access Control with High Access Precision: An
Efficient Approach to Multilevel Security," Database Security, 11: Status and Prospects, (Editor,
C. E. Landwehr) North-Holland, 1989.

[6] Demwujian, S. A. Hsiao, D. K., and Menon, J., "A Multi-backend Database System for Perfor-
mance Gains, Capacity Growth and Hardware Update," Proceedings of the Second IEEE Interna-
tional Conference on Data Engineering, 1986.

[7] Hsiao, D. K., Kohler, M. J., and Stround, S. W., "Query Modifications as a Means of Control-
ling Accesses to Multilevel Secure Databases," Database Security. IV: Status and Prospects. (Edi-
tors, S. Jajodia and C. Landwehr) North-Holland, 1991.

[8] Demurjian, S. A.. and Hsiao, D. K., "The Multi-Model Database System," Proceedings of
International Pheonix Conference on Computers and Communications, March 1989.

[91 Demurjian, S. A., and Hsiao, D. K., "Towards a Better Understanding of Data Models through
the Multilingual Database System," IEEE Transactions on Software Engineering, SE-I 4, 7, 1988.

[10] Hsiao, D. k., and Kamel, M. N., "Heterogeneous Databases: Proliferations, Issues and Solu-
tions," IEEE Tansactions on Knowledge and Data Engineering, KDE- 1,1,1989.

[11 Hsiao, D. K., "Databases and Datadase Systems in the 21-st Century," SIAM Proceedings of
Symposium on Very Large Scale Computation, 1991.

[12] Hsiao, D. K.," The Object-Oriented Database Management - A Tutorial on its Fundamentals,"
(unpublished) 1990.

20

The Relationship of Data Models and Security Requirements:
Part Two-

The Object-Oriented Data Model and the Multilevel Security folicy*

David K. Hsiao

Computer Science Department
Naval Postgraduate School

Monterey, CA 93943
U.S.A.

Abstract

This is the second of two papers or the issues of data models and their capabilities or incapabilities
to support various security policies and their access control requirements. We have argued in the
first paper (II that the conventional data mode!s are monopolicy data models each of which can
only support a single security policy and its access control requirement. Consequently, there is a
proliferation in a large organization of monopolicy database systems which enforce multiple secu-
rity policies and their corresponding access control requirements, respectively. Such a proliferation
in the organizanon of heterogeneous databases and systems creates the problem of data sharing
among various heterogeneous databases and of resource consolidation of all the database system
software, hardware, and -,orsonne!. Further, a popular database system may not support a specific
security policy and its access control recuirement. Retrofitting the popular database system for the
support of a specific security policy and its access control requirement may be time-and-effort-con-
suming. It may also be error-prone. On the other hand, there are experimental database systems
each of which supports a number of secu'ity policies and their access control requirements. Such
multipolicy database systems are ideal for data sharing and resource consolidation. Unfortunately,
few such experimental multipolicy database systems are of production quality. They cannot be
used in an organization tor prod'iction work. The questior is therefore whether or not we can find
a production-quality database system whose data model can support multiple security policies and
their corresponding access control requirements without retrofitting the data model and its database
system?

The object-oriented dtabase system (OODBMS) seems to be such a good candidate. The object-
oriented data model (oodm) has built-in constructs which, although primarily intended for various
inten.ty constraints, can be used to specify various security policies and their access control
requirements. In the Part One (again see [I)), we have shown that the oodm supports the need-to-
know policy and its access control requirement over the unclassified data. In this paper, i.e., Part
Two, we would like to show that the oodm supports also the multilevel security policy -%nd its
access control requirement over the classified data. Together, Parts One and Two indicate that a typ-
ical OODBMS is a multipolicy database system. Further, the OODBMS is comi. g out the experi-
mental stage into the production w.;rld.

*The work reported herein is suppcrted in part by funds provided from NRL.

21

1. INTRODUCTION

In the introduction of Part One [I], we have argued against the use of conventional or experimenta!
data models and their underlying database systems for the support of different security policies and
their access control requirements. We have also argued for the need of a data model arid its produc-
tion-quality database system which can support a number of srcurity policies arid their access con-
trol requirements. We ame not going to repeat those arguments here.

What we have also demonstrated in Part One is the use of inheritance of the object-oriented data
model (oodm) to specify the need-to-know policy and its access control requirement over the
unclassified data. In this part, i.e., Part Two, we would like to show that the other construct of the
oodm, known as the covering, may be used to specify the multilevel security policy and its access
control requirement over the classified data. Both the inheritance and the covering constructs of the
oodm are sufficiently power.'ul and general; we believe that other security policies and their access
control requiremnts may also be specified in them.

With our demonstrations in Part One and in Part two, we hope to show that the oodm is indeed a
mulapolicy data model whose object-oriented database system (OODBMS) may support both clas-
sified and unclassified da.a, exercise respective access controls, and stippon different security pol-
icies. Thus, in a large organization the proliferation of monopolicy data models and their database
systems will no longer be necessary. The issues of data sharing and resource consolidation of het-
erogeneous, monopolicy databases and systems will not be there. What we have in the organization
is a homogeneous database system, i.e., OODBMS, whose data model, i.e., oodm, allows various
security policies and access control requirements to be specified for various databases and to be
supported by the same database system.

2. THE OODM'S COVERING

Althotugh inheritance is considered to be basic in the oodm, covering may be considered by some
as optional in the oodm. However, as far as our concern the presence of covering in the oodm is
essential. Whereas inl'eritance deals with the need-to-know policy and its access control require-
ment, covering is particularly useful and natural for us to specify the multilevel security policy and
its access control requirement.

The reason that inheritance i, not that all-inclusive is due perhaps to its inability to handle the map-
ping of an object of an object class to a set of objects of another object class. Inheritance typically
maps an object class to one or more other object classes. Thus, covering may bc thought as object-
to-class mappings, whereas inheritance as class-to-class mappings. We can be more specific about
them in the following sections.

2. 1. Objects, Object Classes and Object Hierarchies

Definitions of and motivations for the object, object class, and object hierarchy have been given in
Part One [I], we are not going to repeat them here. For those who have not yet read Pan One, the
following short definitions are given: Objects are instances of an object class; each object class has

22

a list of attributes and another list of actions; attributes may be primitive (e.g., made of values of
the same type) or complex (made of primitives); actions may also be primitive (e.g., built-in pro-
grams) or complex (i.e.. made of primitive and/or existing actions on the basis of some action com-
position rules). If all the attributes and aU the actions of the object class A are common to all the
object classes, B 1, B2..... Bh (called subclasses of A) and there may be some atribute or action
of Bi (for i = 1 h) which is not common to A, then we have a two-level object-class hierachy
of A and Bi. In general, an object-class hierarchy may have multiple levels.

2.2. The Object-Class Hierarchy and its Inheritance

In the aforementioned object-class hierarchy, we say that Bi inherits all the property from A. The
inheritance is meant for Bi to have all the attributes and actions of A. From the viewpoint of map-
pings, there is a mapping of A into each Bi. It is also a mapping of an object class into another
object class, i.e., object-class-into-object-class mapping. Funner, it is an one-to-many mapping,
since there is only one A and many B's. On the other hand, covering induces a different kind of
mapping as follows.

2.3. The Covering Construct and its Mapping

Let C and D be two object classes. We say that C is a cover of D if every object of C corresponds
to a subset of objects of D. These subsets of D need not partition D; they are certain subsets of all
the subsets generated for the objects of D. Mathematically, all the subsets of D form the powe, set
of D, i.e., P(D). The correspondence is a mapping f which detemines for an object, c, of C all the
objects, d's, of the subset f(c) of D such that f(c) = d for every one of those d's.

In the mathematical notation, we have

f:C -> P(D).

In the set notation, we have the subset f(c) of D as

(d I f(c) = d where c is in C and d's are in D).

C is termed the cover object class and, correspondingly, D the member object class.

Graphically, we depict the cover class C and its member class D as

C -> P(D).

It is important to note that the covering corresponds an object, not an object class, to a subset of the
power set of another object class. Any subset of an object class can be considered as an inheritance

of the object class, since attributes and actions of the subset are included in the attriburte, and
actions of the object class. Thus, the mapping is from-object-into-class, i.e., object-into-object-
class mapping. Covering is also known as aggregation just as actions are also known as methods.

23

Every object of C may form a singleton, i.e., an object class consisting of the object singly. The

mappin- may now be considered as from-object-class-into-object-class. i.e., object-class-into-
object-class mapping as well. From the viewpoint of object cla~ses, the mapping corresponds many
singletor, classes with a single object class D, the mapping is therefore many-to-one.

3. THE MULTILEVEL SECURITY POLICY AND ITS ACCESS CONTROL REQUIREMENT

The multilevel security policy applies only to classified data. If we place classified data as a data-
base in a database system, then the database should be compartmentalized on the basis of the mul-
tilevel security classification. Ihe multilevel security classification requires that every piece of
classified data is to be identified by its classification level sich as top secret, secret, or confidential.
These classification levels establish a strict security hierarchy with, for example, top secret 'above'
the secret level, and confidential 'below' the secret level. Compartmentalization enables classified
data of the same level to be stored, accessed and controlled separately from classified data of other
levels.

The multilevel security policy requires that users of classified data to be grouped into security
.4acances. Clearance levels of users are identical to classification levels of data.

Further, :he muitilevel security policy requires the database system to support specific and unique
access operations on its compartmentalized database. They are the read-down and write-up opera-
tions. The read-down operation allows a user of the classified database to read all the data whose
classifications are either below or identical to the clearance of the user. The write-up operation
allows a user of classified data to write into the database a piece of classified data whose classifi-
cation is either above or identical to the clearance of ti,. us.r.

It is important to note that the multile .el security policy and its access control requirement are
established without due regard to a specific database system. Thus, when we decide to place clas-
sified data as database in a datauase systr'r we must make certain that the database system can
uphold the multilevel security policy and enforce :Ls aci.ess control requirement. It is the main the-
sis of this paper that (1) the covering of the oodm can characterize the compartmentalization of
classified data efficiently and effectively, thereby supports the multilevel secure database; (2) the
OODBMS can uphold the policy and enforce read-down and write-up operations effectively and
efficiently, thereby supports the multilevel secure users.

4. THE OBJECT-ORIENTED REALIZATION OF THE MULTILEVEL SECURE DATABASE

One of our major objections to the use of the relational ,4ata model for the multilevel secure data-
base is the inability of relational database systems to prov;ie any c3mpanmentalization of classi-
tied data. The elegant and complex mathematical extension of the relational data model via
polyinstantiation [21 allows classified data to be compartmentalized on the basis of their classifica-
tions. However, the polyinstantiated database is not a relauonal database. Consequ-ntly, no exist-
ing relational database system can support the relational-like polyinstantiated database. Obviously,
we look into other data models.

24

4.1. The Amibute-Based Data Model and its Equivalence Relation

In [3, 4] we have shown that the use of the attribute-based data model (abdm) to comp.ranentalize
classified data on the basis of their classifications is straightforward. It requires no mathematical
extension of the abdm. Thus, the multilevel secure database for classified data is indeed an
attribute-based database which can be supported by any attribute-based database system. However,
the only attribute-based database system in existence is experimental which can not be used widely
as a production system. Nevertheless, we may ask ourselves the question: what is the property of
the abdm that supports the compartmentalization of classified data effectively and efficiently?

There is the property of the abdm known as the clustering property of the abdm. Clustering is an
equivalence relation (i.e., the mathematical relation that induces equialence classes) whch parti-
tions the database into mutually exclusive sets of records, known as clusters. There is the direct
correlation between the notion of clusters and the notion of compartments. In other words, if we
can construct an equivalence relation in the oodm, then we can compartmentalize classified data as
we have clustered the attribute-based data. In the following sections we show how an equivalence
relation can be introduced into the covering construct of the oodm.

4.2. Equivalence Relations and their Coverings of the Object-Oriented Classified Data

As in the definition of covering in Section 2.3, any covering relationship involves two object
classes, C and D, and a mapping f from objects of C to members of P(D), the power set of D. Thus,
for each object of C the function f corresponds to a subset of objects of D. However, these subsets
of D need not partition D. For our application, we must partition D. In fact we must also partition
C. We therefore in the following first specify the object class D and its partitioning property. We
then specify the object class C and its partitioning property. Finally, we specify the function f. As
it turns out, we need another function g.

A. The Object Class of Clissified Data

The object class, CLASSIFIED-DATA, consists of objects, i.e.. classified documents, one for each
distinct classification and content. Since the multilevel security classification of classified data is
itself an equivalence relation (we leave it to the reader to verify this equivalence relation), it parti-
tions all the subsets P(CLASSIFTED-DATA) of the object class CLASSIFIED-DATA into mutu-
ally exclusive categories of objects (i.e., equivalence classes of classified documents) one for each
classification. For example, all the top-secret data are in the category of top-secret objects; all the
secret data are in the categori.y of secret objects; all the confidential data are in the categority of
confidential objects; and so on. In each category, there are all the subests of objects of the same
classification. For example, in the top-secret category, there are one-piece sets of top-secret docu-
ments, two-piece sets of top-secret documents, three-piece sets of top-secret documents, and so on.

It is importaxr to note that the mathematical notion of equivalence classes is different from the
object-oriented notion of object classes. Whereas a subset as a member of an equivalence class can-
not be a member of another equivalencc class, subsets of an object class in a covering (e.g., the

25

' | l, ir,7-. ..,', ' , , ' __"7 .7-- FA:." ., - -::7- - ... - -

object class D in Section 2.3) need not partition the object class. Further, an equivalence class con-
sists of some distinct members (e.g., in our case, subsets of P(D)) which are different from any
other equivalence class in the same equivalence relation. Finally, an object class can only consist
of objects whereas an equivalence class may consist of anything as long as they are partitioned by
the equivalence relation.

Intuitively, the classification of the classified data partitions not only individual classified docu-
ments with different classifications into mutually exclusive sets of documents, but also groups all
the documents of various sizes and of the same classification into the same set. Thus, the multilevel
security classification is the equivalence relation which partitions all the subsets of P(CLASSI-
FIED-DATA). The number of partitions of classified data is equal to the number of classification
levels. For the first time, we can associate the term partition with term compartment. Objects of the
CLASSIFIED-DATA or subsets of P(CLASSIFIED-DATA) are compartmentalized, so that all the
objects or object subsets in a compartment have the same classification.

B. The Object Class of Cleared Users

The object C' ss, CLEARED-USERS, consists of objects, i.e., user profiles, one for each distinct
clearance and user id. As it turns out the number of clearance levels is equal to the rumber of clas-
sification levels. Thus, the clearance can be used as an equivalence relation to partition "he user pro-
files into mutually exclusive sets of objects such that all the users in a set have the same clearance.
Since user ids in objects of CLEARED-USERS are distinct and there is an one-to-one correspon-
dance between user profiles and user ids. the user id can be used as an equivalence relation to par-
tition further each set of user profiles into individual profiles with their own unique ids.

With the user id, we can uniquely identify an object, i.e., user profile, of the objec" class,
CLEARED-USERS. With only the user's clearance, we can uniquely identify a set of objects
whose objects all have the same clearance.

C. Mappings of an Object of Cleared Users to a Subset of the Power Set of Classified Data

Mathematically, we specify the function f in the following :

f: CLEARED-USERS -> P(CLASSIFIED-DATA)

where CLEARED-USERS is the cover object class and CLASSIFIED-DATA is the member object
class. To each object, i.e., user profile, of CLEARED-USERS, we correspond subsets of objects,
classified documents, of CLASSIFIED-DATA such that each subset of classified documents has a
common classification level below or identical to the user's clearance level in the user profile.

Consider a sample multilevel secure database with four classification levels: top-secret, secret, coll-
fidential, and unclassfied. The entire database is called the object class, CLASSIFED-DATA. The
power set, P(CLASSIFIED-DATA), is partitioned by the classification into four and only four sets
of subsets:

26

(subsets of objects of classified documents with the top-secret classification).

(subsets of objects of classified documents with the secret classification),

(subsetz of objects of classified documents with the confidential classification),

(subsets of objects of classified documents with the unclassified classification).

The important observations are that (1) the above four subsets am mutually exclusive and (2) each
is actually a set of subsets, not just a subset.

Now, consider an object of the object class, CLEARED-USERS. The object is obviously a user
profile which contains an attribute, termed CLEARANCE-LEVEL If its attibute value is top-
secret, then f maps the obje..t to a!l the aforementicned four partitioned sets of P(CLASSIFIED-
DATA). If its attribute value is secret, then f maps the object to all the ren. iing three partitioned
sets of P(CLASSIFIED-DATA), except the first one with top-secret classification. If its attribute
value is confidential, then f maps the object to the two partitioned sets of P(CLASSIFIED-DATA)
with confidential and unclassified classifications, respectively. Finally, if its attribute value is
unclassified, then f maps the object to the only partiticned set with the unclassified classification.
Graphically, we have the following mapping, f, from an object of object-class, CLEARED-
USERS, to four subsets of P(CLASSIFIED-DATA):

(subsets of classified documents
with the top-secret classification)

(subsets of classified documents
with the secret clearance}

An user profile with the top-secret clearance
(subsets of classified documents

with the confidential classification)

(subsets of classified documents
with the unclassified classification)

(subsets of classified documents
with secret classification)

An user profile with the secret clearance
(subsets of classified documets

with confidential classification i

(subsets of classified documents
with the unclassified classification)

27

(subsets of classified documents
with the confidential classificatioai

An user profile w'ith the confidential clearance
< fsubsets of classified dicuments

with the unclassified classification)

An user with the unclassified clearance - ((subsets of classified documents
with the unclassified classification)

From the above specification, it is clear that the mapping f facilitates one of the two multilevel
sec,r operations, the read-down operation, since all the classified data which are clcared for the
user for read accesses have been mapped to the user profile. We need another mapping to facilitate
the write-up operation. Consider g in the following:

g: CLEARED-USERS -> (CLASSTFIED-DATA)

where CLEARED-USERS is again the cover object class and CLASSIFIED-DATA is again the
metnoer object class. To each object, i.e., user profile, of CLEARED-USERS, we correspond sub-
sets of objects, classified ducuments, of CLASSIFIED-DATA such that each subset of classii'ii
documents has a common classification level above or identical to the user's clearance level in the
user profile. Using the same example for f. we now illustrate the specification of g. Co.isider a user
profile in the object ciass CLEARED-USERS. If its attribute value is top-:cret, then g maps the
object to the only partitioned set of P(CLASSMIED-DATA) with t.e top-secret classification. If
its attribute value is secret, then g maps the object to the two partitioned sezs of P(CLASSIFIED-
DATA) with top-secret and secret c!assifications, respectively. If its attribute va.,,e is confidential,
then g maps the object to the three remaining partitioned sets of P(CLASSIFIED-DATA), except
the partitioned set with the unclassified cassification. Finally, if -ts attribute value is unciassified.
then g maps the object to all the four prxtitioned sets of P(CLASS[FIED-DATA).

An user profile with the top-secret clearance (subsets of classified 4ocuments
with the top-secret classification)

(*bsets of classified documents
with the top-secret classif -ation }

An user profile with ,ne secret clearance
(subsets of classified documents
with the secret classification)

I subsets of classified documents
with the top-secret classification

An user profile with the confidential clearance ((subsets of classified documents
with the secret classification)

< (subsets of classified document
with the confidential classification)

28

I

(subsets of classified documents
with the top-secret clearance)

(subsets of classified documents
with the scret, clearance)I

An user profile with the unclassified clearance
(subsets of classified documents
with he confidential clearance)

(subsets of classified documents
with the unclassified clearance)

From the above specification, it is also clear that the mapping g facilitates the other multilevel
secure operation, i.e., the write-up operation, since all the classified data which are cleared for the
user for write accesses have been mapped to the user profil. It is important to note that in a write
acccss the write-up operation means an insznion. It does not mean to write over the existing clas-
sified data.

D. The Read-Down aad Write-Up Operations as Actions of the Classified-Data Object Class

In the previous section wc have specified two furctions, f and g, for two covering hi'trarchies,
respectively. Let us call the covering hierarchy defined by f the f-covering hierarchy of the cleared
user to classified data and the covering hi.-rarchy defined by g the g-covering hierarchy of the
cleared user to classified data. Obviously, the f-c:ivering hierarchy is established for the acc-ss con-
troi of the read-down operation of the multilevel security policy over classified data. For this rea-
son, it is also called the read-down hiera,'chy. On the other hand, the g-covering hierarchy is
established for the access control of the write-up operation of the multilevel security policy over
the same classified data. We also term it the write-up hierarchy.

The actually actions which perform either the read-down operation or the write -up operation are
embedded in the object class, CLASSIFIED-DATA. Let us call the read-down action the f-action
and write-up action the g-action. Obviously, the f-action can only be carried out in the f-covcring
hierarchy and the g-action can only be carried out in the g-hierarchy. For the se reasons, we refer to
the two actions as the access control operations and the two hierarchies as the access control hier-
archies for the multilevel security policy.

5. CONCLUDING REMARKS ON INHERITANCE AND COVERING OF THE OODM

We all know that the presence of a data model is for the user to characterize and generate a database
on the basis of constructs of the data model so that the database may be supported on the database
system of the data model. As far as we are concerned, there are two major constructs in the oodm:
inheritance and covering. Let us review their capabilities in the following sections and then con

29

sider some new issues.

5. 1. On their Capabilities

There are five outstanding capabilities of the oodm and its OODBMS. We expound them in the fol-

lowing paragraphs. In our exposition of these capabilities, we attempt to relate them to the security
issues of our concern or to other dat models and their database systems in existence.

A. Naturalism

We have demonstrate that the inheritance construct can be used to charaterize and generate an
objected-oriented database for the need-to-know policy and its access control requirement. The
demonstration was published in the Part One [I]. In that demonstration the use of inheritance for
the compliance of the policy and for the enforcement of its access control was straightforward.
Thus, inheritance is a natural construct in the oodm to characterize and generate objected-oriented
databases for database applications under the need-to-know policy and its access control.

On the other hand, the covering construct of the oodm is used herein to characterize and generate
an object-oriented database for classified data under the multilevel security policy and its access
control requirement. This demonstration is presented in the Part Two, i.e., this paper. The use of
covering for the compliance of the policy and for the enforcement of its access control is also
straightforward. Thus, covering is a natural construct in the oodm to characterize and generate
object-oriented databases for classified data and for data accesses under the multilevel security pol-
icy and its access control.

B. Generality

Of a conventional data model, the constructs are intended specifically for a class of applications.
For examples, the relational data model and its constructs are inteaded for tables and table man-
agements. Thus, the relational database system is good for table-oriented applications 151. The net-
work data m(del and its constructs are intended for keeping track of inventories. Thus, the network

database system is used for inventory-control applications [6]. The hierarchical data model and its
constructs are intended for managing production or design assemblies. Thus, the hierarchical data-
base system is good for keeping track of product or design assemblies (71. Of course, we can
always use one data model and its constructs to 'emulate' the constructs of another data model so
that applications intended for the other model may be supported on the data model anti database
system on hand. Emulations create complications and violate the rule of naturalism as expounded
in the previous section.

Neither inheritance nor covering has been constructed specifically for either the need-to-know 'ol-
icy or the multilevel-security policy, respectively. Nevertheless, they provide constructs which nat-
urally characterize the respective databases. This may be due to the generality of the object-
oriented constructs, since they are not intended for specific applications. The vested generality in

30

the oodm may allow us to characterize and generate additional databases for new policies and their
access control requirements.

C. Flexibility

A number of equivalence relations is needed in a secure database system. These equivalence rela-
tions ar used to partition either the users or ihe data for the security purpose of forming distinct
user groups or separate data aggregates. In the attribute-bsed data model [3]. a built-in equiva-
lence relation based on the Cartesian product of descriptors is made available to the database
designer for the purpose of partitioning the attribute-based database into clusters. Unfortunately.
there is no attribute-based database systam in production; one can only support an attribute-based
secure database experimentally [4). On the other hand. none of the conventional data models pro-
vides any equivalence relation. The possibility for a conventional database system to support well-
compartmentalized databases and well-segregated user groups is not there.

The oodm does not have built-in equivalence relations either. However, the covering construct
lends itself easily for a definition of an equivalence relation, since the Cartisian product can easily
be applied to all the subsets of the power set of the database object class. For an example, in our
demonstration earlietr, the power set has been P(CLASSIFIED-DATA). Thus, the oodm is suff,-
ciently flexible for the database designer to introduce the desired equivalence relation to partition
P(CLSSIFIED-DATA).

D. Multipolicy

Conventional database systems are all monopolicy database systems. By monopolicy we mean that
a database system can only support a single security policy and its access control requirement.
Most of the conventional database systems support the need-to-know policy and its access control
requirement. To support another security policy and its access control requirement, the conven-
tional user must acquire another monopolicy database system. The proliferation of various
monopolicy database systems in a large organization hinders data sharing and resource consolida-
tion, since the interoperability issues among heterogeneous databases supported on their respective
hcterogeneoas database systems have not been resolved (81.

On the other hand, the OODBMS is a mudtipolicy database system; i.e., in a single database system
several security policies and their access control requirements are supported. As a homogeneous
database system with a single data model, the issues of interoperability among heterogeneous data-
base systems do not exist. There is also no prolife.tion of new database systems, since we continue
to utilize the OODBMS on hand. In Part One and Part Two of this paper, we have demonstrated
that the OODBMS is at least bipolicy.

E. Practicality

Unlike the experimental attribute-based database system [41, there are object-oriented database

31

systems of production quality, i.e., in practice. We can specify several databases - one for each pol-
icy and its acce.ss control reqiurement - and have these databases supported on an OODBMS for
vario.s data security applications under different security policies and their access control require-
ments.

5.2. On other Issues

Despite aforementioned merits, a number re aew issues must be resolved t=fore the viability of the
oodm and its OODBMS can be sustained., hese issues are expounded in the following paragraphs.

A. The Lack of a Standard OODM

Unlike a conventional data model which was proposed and specified by a single source, object-ori-
ented approaches to database management came from many sources. Thus, there are many object-
oriented data models, instead of a singie, therefore, standard oodm.

There is a historical and technical reason for the proliferation of object-oriented data models. The
notion of object-oriented approaches to programming has been initiated in the programming lan-
guagi community before the notion of object-oriented approaches to database management
become vogue in the database community. Since programming involves data or data sets, there are
object-oriented constructs to deal with them. However, these data or data sets are primarily mem-
ory-bound and temporary, not permanent disk-based databases. Database practitioners attempt to
extend and expand the object-oriented programming constructs to object-oriented database con-
structs. Consequently, there are many and different extensions and expansions which preclude a
standard oodm.

It is not clear whether or not every oodm ;s endowed with both inheritance and covering. Further,
of those with both inheritance and covering it is also not clear whether or not the constructs pro-
vided for either of them are identical to the ones we use in our realization of the need-to-know pol-
icy or the multilevel security policy, since there is no single and authoritative specification of all
the constructs of inheritance and covering.

B. The Lack of a Standard OODBMS

A conven.ional database system of a conventional data model is either (1) an industrial standard
based on the common specification of its data language and system architecture put out by an
industrial and/or user consortium or (2) a de facto standard put out by an industrial giant. For
instances, all commercial network database systems use the CODASYL data manipulation lan-
guage, i.e., CODASYL-DML, and have same system features. All the commercial relational data-
base systems use SQL and have same system features. In object-oriented database systems, there
is the lack of not only a standard oodm but also either an industrial or de facto standard for the
OODBMS. Consequently, there are many different object-oriented database systems.

32

It is therefore not clear that among those object-oriented database systems having both inheritance
and covering whether or not they can provide enough language constructs and system features for
us to specify (1) access control requirements as they are dictated by their respective policies, (2)
processing requirements as dictated by respective applications, and (3) system features as dictated
by necessary interfaces with the existing operating and co.nputer system.

5.3. On their Prospects

Perhaps, the only way to resolve the aforem-intioned issues is to try a number of object-oriented
data models and their database systems for oer security applications. Since the use of object-ori-
ented approaches to the secure database management is a new kind of applications, it may even
open up additional applications for these models and database systems. We should not bypass the
object-oriented data models and their database systems for our secure database applications, due
to their vareity. We should sort them out on the basis of our needs and expectations. Thus, the pros-
pect for the oodm and OODBMS to support secure database management should be promising.

6. REFERENCES

[1] Hsiao, David K.. "The Relationship of Data Models and Security Requirements: Part One - The
Objected-Oriented Data Model and the Need-to-Know Policy," included in this rcport.

[2] Denning, D. E., Lunt, T. F., Schell, R. R., Heckman, M., and Shockley, W. R., "A Multilevel
Relational Data Model," Proceedings of IEEE Symposium on Security and Privacy. 1987.

[3] Hoppenstand, G. S., and Hsiao, David K., "Secure Access Control with High Access Precision:
An Efficient Approach to Multilevel Security," Database Security, I: Status and Prospects, (Edi-
tor, C. E. Landwehr), North-Holland, 1989.

(41 Hsiao, David K.. Kohler, M. I., and Stround, S. W., "Query Modifications as a Means of Con-
trolling Accesses to Multilevel Secure Databases," Database Security. IV: Status and Prospects,
(Editors, S. Jajodia and C. E. Landwehr), North-Holland, 1991.

(51 Codd, E. F., The Relational Modelfor Databse Management: Version 2, Addison-Wesley, 1990.

(61 CODASYL, "Report of the Data Description Language Committee," Information Systems, 3,
pp. 247-320, 1978.

[71 Geller, J. R., IMS Administration, Programming, and Data Base Design, John Wiley & Sons,
1989.

[81 Hsiao, David K., and Kamel, M. N., "The Multimodel and Multilingual Approach to Interop-
erability of Mutidatabse Systems," Proceedings of First International Workshop on Interoperabil-
ity in Mutidatabase Systems, Kyoto, Japan, April 7-9, 1991.

33

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314 2

Dudley Knox Library
Code 0142
Naval Postgraduate School
Monterey, CA 93943-5100 2

Office of Research Administration
Code 012
Naval Postgraduate School
Monterey, CA 93943-5100

Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

David K. Hsiao
Code CSHq
Computer Science Department
Naval Postgraduate School
Monterey, :A 93943-5100 10

Chief of Naval Research
800 N. Quincy Street
Arlington, VA 22302-0268

Center for Naval Analyses
4401 Ford Avenue
Alexandria, VA 22302-0268

Mr. Lynwood Sutton
(Code 8322)
Naval Ocean Systems Center
San Diego, CA 92152

Mr. Al Wells & Ms. Leah Wong
Code 443
Naval Ocean Systems Center
San Diego, CA 92152 2

Ms. Doris Mlezco
Code 9033
Naval Pacibc Missile Test Center
Point Mugu, CA 93042

Messrs. Hank Steubing & Chuck Koch
Code 50C
Naval Air Development Center
Wirminster, PA 18974 2

Capt. O'Neal, USN
Code 630
Naval Security Group Command
Washington, DC 20390

Mr. John Cambel
National Computer Security Center
1500 Savage Drive
Fort Meade, MD 20755

Mr. John Hooder
ITAC
Building 166
Washington Navy Y0ard
Washington, DC 2003

Dr. Carl Landwehr
Code 5542
Naval Research Laboratory
Washington, DC 20375 2

i I

